skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Haijie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Perching onto an object (e.g., tree branches) has recently been leveraged for addressing the limited flight time for flying robots. Successful perching needs a mechanical mechanism to damp out the impact and robustly grasp the object. Generally, such a mechanism requires actuation for grasping. In this article, we present a fully passive mechanism without using any actuator: a mechanically intelligent and passive (MIP) gripper that can be used for either aerial perching or grasping. Initially open, the gripper can be closed by the impact force during perching. After closure, if a sufficient mass (e.g., the robot’s mass) is applied, the gripper can switch to a holding state and maintain that state to hold the mass. Once the mass is removed, the gripper can automatically open. We establish static models for the gripper to predict the required forces for successful state transitions. Based on the models, we develop design guidelines for the gripper so that it can be used for different flying robots with different weights. Experiments are conducted to validate the models. Attaching the gripper onto a quadcopter, we demonstrated aerial perching onto rods and aerial grasping rod-like objects. Because the MIP gripper is lightweight (can reach a mass ratio of 0.75% between the gripper and the grasped object for static grasping), we expect it would be well suited for aerial perching or grasping due to the limited payload capability for flying robots. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)